An isoperimetric inequality for logarithmic capacity of polygons
Annals of mathematics, Tome 159 (2004) no. 1, pp. 277-303
Voir la notice de l'article provenant de la source Annals of Mathematics website
We verify an old conjecture of G. Pólya and G. Szegő saying that the regular $n$-gon minimizes the logarithmic capacity among all $n$-gons with a fixed area.
DOI :
10.4007/annals.2004.159.277
Affiliations des auteurs :
Alexander Yu. Solynin 1 ; Victor A. Zalgaller 2
@article{10_4007_annals_2004_159_277,
author = {Alexander Yu. Solynin and Victor A. Zalgaller},
title = {An isoperimetric inequality for logarithmic capacity of polygons},
journal = {Annals of mathematics},
pages = {277--303},
publisher = {mathdoc},
volume = {159},
number = {1},
year = {2004},
doi = {10.4007/annals.2004.159.277},
mrnumber = {2052355},
zbl = {1060.31001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.277/}
}
TY - JOUR AU - Alexander Yu. Solynin AU - Victor A. Zalgaller TI - An isoperimetric inequality for logarithmic capacity of polygons JO - Annals of mathematics PY - 2004 SP - 277 EP - 303 VL - 159 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.277/ DO - 10.4007/annals.2004.159.277 LA - en ID - 10_4007_annals_2004_159_277 ER -
%0 Journal Article %A Alexander Yu. Solynin %A Victor A. Zalgaller %T An isoperimetric inequality for logarithmic capacity of polygons %J Annals of mathematics %D 2004 %P 277-303 %V 159 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2004.159.277/ %R 10.4007/annals.2004.159.277 %G en %F 10_4007_annals_2004_159_277
Alexander Yu. Solynin; Victor A. Zalgaller. An isoperimetric inequality for logarithmic capacity of polygons. Annals of mathematics, Tome 159 (2004) no. 1, pp. 277-303. doi: 10.4007/annals.2004.159.277
Cité par Sources :