Voir la notice de l'article provenant de la source Annals of Mathematics website
The main result of this paper is that the $k^{\rm th}$ continuous Hochschild cohomology groups $H^k(\mathcal{M},\mathcal{M})$ and $H^k(\mathcal{M},B(H))$ of a von Neumann factor ${\mathcal{M}}\subseteq B(H)$ of type ${\rm II}_1$ with property $\Gamma$ are zero for all positive integers $k$. The method of proof involves the construction of hyperfinite subfactors with special properties and a new inequality of Grothendieck type for multilinear maps. We prove joint continuity in the $\|\cdot\|_2$-norm of separately ultraweakly continuous multilinear maps, and combine these results to reduce to the case of completely bounded cohomology which is already solved.
Erik Christensen 1 ; Florin Pop 2 ; Allan M. Sinclair 3 ; Roger R. Smith 4
@article{10_4007_annals_2003_158_635,
author = {Erik Christensen and Florin Pop and Allan M. Sinclair and Roger R. Smith},
title = {Hochschild cohomology of factors with property $\Gamma$},
journal = {Annals of mathematics},
pages = {635--659},
publisher = {mathdoc},
volume = {158},
number = {2},
year = {2003},
doi = {10.4007/annals.2003.158.635},
mrnumber = {2018931},
zbl = {1048.46051},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.635/}
}
TY - JOUR AU - Erik Christensen AU - Florin Pop AU - Allan M. Sinclair AU - Roger R. Smith TI - Hochschild cohomology of factors with property $\Gamma$ JO - Annals of mathematics PY - 2003 SP - 635 EP - 659 VL - 158 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.635/ DO - 10.4007/annals.2003.158.635 LA - en ID - 10_4007_annals_2003_158_635 ER -
%0 Journal Article %A Erik Christensen %A Florin Pop %A Allan M. Sinclair %A Roger R. Smith %T Hochschild cohomology of factors with property $\Gamma$ %J Annals of mathematics %D 2003 %P 635-659 %V 158 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.635/ %R 10.4007/annals.2003.158.635 %G en %F 10_4007_annals_2003_158_635
Erik Christensen; Florin Pop; Allan M. Sinclair; Roger R. Smith. Hochschild cohomology of factors with property $\Gamma$. Annals of mathematics, Tome 158 (2003) no. 2, pp. 635-659. doi: 10.4007/annals.2003.158.635
Cité par Sources :