Automorphism groups of finite dimensional simple algebras
Annals of mathematics, Tome 158 (2003) no. 3, pp. 1041-1065
Voir la notice de l'article provenant de la source Annals of Mathematics website
We show that if a field $k$ contains sufficiently many elements (for instance, if $k$ is infinite), and $K$ is an algebraically closed field containing $k$, then every linear algebraic $k$-group over $K$ is $k$-isomorphic to $\mathop{\rm Aut}(A\otimes_k\!K)$, where $A$ is a finite dimensional simple algebra over $k$.
DOI :
10.4007/annals.2003.158.1041
Affiliations des auteurs :
Nikolai L. Gordeev 1 ; Vladimir L. Popov 2
@article{10_4007_annals_2003_158_1041,
author = {Nikolai L. Gordeev and Vladimir L. Popov},
title = {Automorphism groups of finite dimensional simple algebras},
journal = {Annals of mathematics},
pages = {1041--1065},
publisher = {mathdoc},
volume = {158},
number = {3},
year = {2003},
doi = {10.4007/annals.2003.158.1041},
mrnumber = {2031860},
zbl = {1073.20039},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1041/}
}
TY - JOUR AU - Nikolai L. Gordeev AU - Vladimir L. Popov TI - Automorphism groups of finite dimensional simple algebras JO - Annals of mathematics PY - 2003 SP - 1041 EP - 1065 VL - 158 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1041/ DO - 10.4007/annals.2003.158.1041 LA - en ID - 10_4007_annals_2003_158_1041 ER -
%0 Journal Article %A Nikolai L. Gordeev %A Vladimir L. Popov %T Automorphism groups of finite dimensional simple algebras %J Annals of mathematics %D 2003 %P 1041-1065 %V 158 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4007/annals.2003.158.1041/ %R 10.4007/annals.2003.158.1041 %G en %F 10_4007_annals_2003_158_1041
Nikolai L. Gordeev; Vladimir L. Popov. Automorphism groups of finite dimensional simple algebras. Annals of mathematics, Tome 158 (2003) no. 3, pp. 1041-1065. doi: 10.4007/annals.2003.158.1041
Cité par Sources :