DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS
    
    
  
  
  
      
      
      
        
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 39 
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
            
              
 The distance or $D$-eigenvalues of a graph $G$ are the eigenvalues of its distance matrix.
The distance or $D$-energy $E_D(G)$ of the graph $G$ is the sum of the absolute values of its $D$-eigenvalues.
Two graphs $G_1$ and $G_2$ are said to be $D$-equienergetic if $E_D(G_1)=E_D(G_2)$.
Let $F_1$ be the 5-vertex path, $F_2$ the graph
obtained by identifying one vertex of a triangle with one end vertex of the 3-vertex path,
$F_3$ the graph obtained by identifying a vertex of a triangle with a vertex of another triangle
and $F_4$ be the graph obtained by identifying one end vertex of a 4-vertex star with a middle vertex of a 3-vertex 
path.
In this paper we show that if $G$ is $r$-regular, with $\diam(G)\leq2$,
and $F_i$, $i=1,2,3,4$, are not induced subgraphs of $G$,
then the $k$-th iterated line graph $L^k(G)$ has exactly one positive $D$-eigenvalue.
Further, if $G$ is $r$-regular, of order $n$, $\diam(G)\leq2$,
and $G$ does not have $F_i$, $i=1,2,3,4$, as an induced subgraph,
then for $k\geq1$, $E_D(L^k(G))$ depends solely on $n$ and $r$.
This result leads to the construction of non $D$-cospectral, $D$-equienergetic graphs
having same number of vertices and same number of edges.
            
            
            
          
        
      @article{10_2298_PIM0999039R,
     author = {H. S. Ramane and D. S. Revankar and I. Gutman and H. B. Walikar},
     title = {DISTANCE {SPECTRA} {AND} {DISTANCE} {ENERGIES} {OF} {ITERATED} {LINE} {GRAPHS} {OF} {REGULAR} {GRAPHS}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {39 },
     publisher = {mathdoc},
     volume = {_N_S_85},
     number = {99},
     year = {2009},
     doi = {10.2298/PIM0999039R},
     zbl = {1249.05251},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/}
}
                      
                      
                    TY - JOUR AU - H. S. Ramane AU - D. S. Revankar AU - I. Gutman AU - H. B. Walikar TI - DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS JO - Publications de l'Institut Mathématique PY - 2009 SP - 39 VL - _N_S_85 IS - 99 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/ DO - 10.2298/PIM0999039R LA - en ID - 10_2298_PIM0999039R ER -
%0 Journal Article %A H. S. Ramane %A D. S. Revankar %A I. Gutman %A H. B. Walikar %T DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS %J Publications de l'Institut Mathématique %D 2009 %P 39 %V _N_S_85 %N 99 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999039R/ %R 10.2298/PIM0999039R %G en %F 10_2298_PIM0999039R
H. S. Ramane; D. S. Revankar; I. Gutman; H. B. Walikar. DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 39 . doi: 10.2298/PIM0999039R
Cité par Sources :