TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I
    
    
  
  
  
      
      
      
        
Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 19 
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
            
              
 A spectral graph theory is a theory in which graphs are studied by means of eigenvalues of a matrix $M$
which is in a prescribed way defined for any graph.
This theory is called $M$-\emph{theory}.
We outline a spectral theory of graphs based on the signless Laplacians $Q$
and compare it with other spectral theories,
in particular with those based on the ađacency matrix $A$ and the Laplacian $L$.
The $Q$-theory can be composed using various connections to other theories:
equivalency with $A$-theory and $L$-theory for regular graphs,
or with $L$-theory for bipartite graphs, general analogies with $A$-theory
and analogies with $A$-theory via line graphs and subdivision graphs.
We present results on graph operations, inequalities for eigenvalues and reconstruction problems.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.2298/PIM0999019C
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
05C50  
Keywords: graph theory, graph spectra, ađacency matrix, signless Laplacian
                    
                    
                    
                  
                
                
                Keywords: graph theory, graph spectra, ađacency matrix, signless Laplacian
@article{10_2298_PIM0999019C,
     author = {Drago\v{s} Cvetkovi\'c and Slobodan K. Simi\'c},
     title = {TOWARDS {A} {SPECTRAL} {THEORY} {OF} {GRAPHS} {BASED} {ON} {THE} {SIGNLESS} {LAPLACIAN,} {I}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {19 },
     publisher = {mathdoc},
     volume = {_N_S_85},
     number = {99},
     year = {2009},
     doi = {10.2298/PIM0999019C},
     zbl = {1224.05293},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0999019C/}
}
                      
                      
                    TY - JOUR AU - Dragoš Cvetković AU - Slobodan K. Simić TI - TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I JO - Publications de l'Institut Mathématique PY - 2009 SP - 19 VL - _N_S_85 IS - 99 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0999019C/ DO - 10.2298/PIM0999019C LA - en ID - 10_2298_PIM0999019C ER -
%0 Journal Article %A Dragoš Cvetković %A Slobodan K. Simić %T TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I %J Publications de l'Institut Mathématique %D 2009 %P 19 %V _N_S_85 %N 99 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0999019C/ %R 10.2298/PIM0999019C %G en %F 10_2298_PIM0999019C
Dragoš Cvetković; Slobodan K. Simić. TOWARDS A SPECTRAL THEORY OF GRAPHS BASED ON THE SIGNLESS LAPLACIAN, I. Publications de l'Institut Mathématique, _N_S_85 (2009) no. 99, p. 19 . doi: 10.2298/PIM0999019C
Cité par Sources :