On the Differentiability of a Distance Function
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 65
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $M$ be a simply connected complete Kähler
manifold and $N$ a closed complete totally geodesic complex
submanifold of $M$ such that every minimal geodesic in $N$ is
minimal in $M$. Let $U_\nu$ be the unit normal bundle of $N$ in
$M$. We prove that if a distance function $\rho$ is differentiable
at $v\in U_\nu$, then $\rho$ is also differentiable at $-v$.
DOI :
10.2298/PIM0897065P
Classification :
53C22, 53C55
Keywords: distance function, differentiability, minimal geodesic
Keywords: distance function, differentiability, minimal geodesic
@article{10_2298_PIM0897065P, author = {Kwang-Soon Park}, title = {On the {Differentiability} of a {Distance} {Function}}, journal = {Publications de l'Institut Math\'ematique}, pages = {65 }, publisher = {mathdoc}, volume = {_N_S_83}, number = {97}, year = {2008}, doi = {10.2298/PIM0897065P}, zbl = {1199.53097}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897065P/} }
TY - JOUR AU - Kwang-Soon Park TI - On the Differentiability of a Distance Function JO - Publications de l'Institut Mathématique PY - 2008 SP - 65 VL - _N_S_83 IS - 97 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897065P/ DO - 10.2298/PIM0897065P LA - en ID - 10_2298_PIM0897065P ER -
Kwang-Soon Park. On the Differentiability of a Distance Function. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 65 . doi: 10.2298/PIM0897065P
Cité par Sources :