A Class of Discrete Spectra of Non-Pisot Numbers
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 9
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate the class of $\pm1$ polynomials evaluated at $q$
defined as:
\[
A(q)=\{\epsilon_0+\epsilon_1q+\cdots+\epsilon_m q^m :\epsilon_i\in\{-1,1\}\}
\]
and usually called spectrum,
and show that, if $q$ is the root of the polynomial
$x^n-x^{n-1}-\dots-x^{k+1}+x^k+x^{k-1}+\cdots+x+1$ between 1 and 2,
and $n>2k+3$, then $A(q)$ is discrete, which means that it does not have any accumulation points.
@article{10_2298_PIM0897009S, author = {Dragan Stankov}, title = {A {Class} of {Discrete} {Spectra} of {Non-Pisot} {Numbers}}, journal = {Publications de l'Institut Math\'ematique}, pages = {9 }, publisher = {mathdoc}, volume = {_N_S_83}, number = {97}, year = {2008}, doi = {10.2298/PIM0897009S}, zbl = {1274.11160}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897009S/} }
TY - JOUR AU - Dragan Stankov TI - A Class of Discrete Spectra of Non-Pisot Numbers JO - Publications de l'Institut Mathématique PY - 2008 SP - 9 VL - _N_S_83 IS - 97 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0897009S/ DO - 10.2298/PIM0897009S LA - en ID - 10_2298_PIM0897009S ER -
Dragan Stankov. A Class of Discrete Spectra of Non-Pisot Numbers. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 9 . doi: 10.2298/PIM0897009S
Cité par Sources :