Lower Bounds for Estrada Index
    
    
  
  
  
      
      
      
        
Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 1 
    
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
            
              
 If $G$ is an $(n,m)$-graph whose spectrum consists
 of the numbers $\lambda_1,\lambda_2,\ldots,\lambda_n$,
 then its Estrada index is $\operatname{EE}(G)=\sum_{i=1}^n e^{\lambda_i}$.
 We establish lower bounds for $\operatorname{EE}(G)$ in terms of $n$ and $m$.
            
            
            
          
        
      @article{10_2298_PIM0897001G,
     author = {Ivan Gutman},
     title = {Lower {Bounds} for {Estrada} {Index}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_83},
     number = {97},
     year = {2008},
     doi = {10.2298/PIM0897001G},
     zbl = {1199.05219},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0897001G/}
}
                      
                      
                    Ivan Gutman. Lower Bounds for Estrada Index. Publications de l'Institut Mathématique, _N_S_83 (2008) no. 97, p. 1 . doi: 10.2298/PIM0897001G
Cité par Sources :