Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 111
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Given positive integer $n>2$, an algebra is said to be a
$(2,n)$-algebra if any of its subalgebras generated by two
distinct elements has $n$ elements. A variety is called a
$(2,n)$-variety if every algebra in that variety is a
$(2,n)$-algebra. There are known only $(2,3)$-, $(2,4)$- and
$(2,5)$-varieties of groupoids, and there is no $(2,6)$-variety.
We present here $(2,n)$-varieties of groupoids for $n=7,8,9$.
@article{10_2298_PIM0795111G,
author = {Lidija Gora\`einova-Ilieva and Smile Markovski},
title = {Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9},
journal = {Publications de l'Institut Math\'ematique},
pages = {111 },
publisher = {mathdoc},
volume = {_N_S_81},
number = {95},
year = {2007},
doi = {10.2298/PIM0795111G},
zbl = {1234.20068},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/}
}
TY - JOUR AU - Lidija Goraèinova-Ilieva AU - Smile Markovski TI - Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9 JO - Publications de l'Institut Mathématique PY - 2007 SP - 111 VL - _N_S_81 IS - 95 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/ DO - 10.2298/PIM0795111G LA - en ID - 10_2298_PIM0795111G ER -
%0 Journal Article %A Lidija Goraèinova-Ilieva %A Smile Markovski %T Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9 %J Publications de l'Institut Mathématique %D 2007 %P 111 %V _N_S_81 %N 95 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0795111G/ %R 10.2298/PIM0795111G %G en %F 10_2298_PIM0795111G
Lidija Goraèinova-Ilieva; Smile Markovski. Constructions of (2,n)-varieties of groupoids for n = 7, 8, 9. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 111 . doi: 10.2298/PIM0795111G
Cité par Sources :