Canonical Biassociative Groupoids
Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the paper \emph{Free biassociative groupoids}, the
variety of biassociative groupoids (i.e., groupoids that satisfy
the condition: every subgroupoid generated by at most two elements
is a subsemigroup) is considered and free objects are constructed
using a chain of partial biassociative groupoids that satisfy
certain properties. The obtained free objects in this variety are
not canonical. By a \textit{canonical groupoid} in a variety
$\mathcal{V}$ of groupoids we mean a free groupoid $(R,*)$ in
$\mathcal{V}$ with a free basis $B$ such that the carrier $R$ is a
subset of the absolutely free groupoid $(T_B,\cdot)$ with the
free basis $B$ and $(tu\in R\;\Rightarrow\;t,u\in R\,\,\\,\,t*u=tu)$.
In the present paper, a canonical description of free
objects in the variety of biassociative groupoids is obtained.
DOI :
10.2298/PIM0795103J
Classification :
08B20 03C05
Keywords: Groupoid, subgroupoid generated by two elements, subsemigroup, free groupoid, canonical groupoid
Keywords: Groupoid, subgroupoid generated by two elements, subsemigroup, free groupoid, canonical groupoid
@article{10_2298_PIM0795103J,
author = {Biljana Janeva and Sne\v{z}ana Ili\'c and Vesna Celakoska-Jordanova},
title = {Canonical {Biassociative} {Groupoids}},
journal = {Publications de l'Institut Math\'ematique},
pages = {103 },
publisher = {mathdoc},
volume = {_N_S_81},
number = {95},
year = {2007},
doi = {10.2298/PIM0795103J},
zbl = {1247.20071},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/}
}
TY - JOUR AU - Biljana Janeva AU - Snežana Ilić AU - Vesna Celakoska-Jordanova TI - Canonical Biassociative Groupoids JO - Publications de l'Institut Mathématique PY - 2007 SP - 103 VL - _N_S_81 IS - 95 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/ DO - 10.2298/PIM0795103J LA - en ID - 10_2298_PIM0795103J ER -
%0 Journal Article %A Biljana Janeva %A Snežana Ilić %A Vesna Celakoska-Jordanova %T Canonical Biassociative Groupoids %J Publications de l'Institut Mathématique %D 2007 %P 103 %V _N_S_81 %N 95 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0795103J/ %R 10.2298/PIM0795103J %G en %F 10_2298_PIM0795103J
Biljana Janeva; Snežana Ilić; Vesna Celakoska-Jordanova. Canonical Biassociative Groupoids. Publications de l'Institut Mathématique, _N_S_81 (2007) no. 95, p. 103 . doi: 10.2298/PIM0795103J
Cité par Sources :