Derivations of Skew Polynomial Rings
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 107
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $R$ be a commutative ring of characteristic zero. Under
certain conditions we determine the type of derivations of a skew
polynomial ring $A_n=R[X_1,X_2,\dots,X_n;d_1,d_2,\dots,d_n]$ over $R$,
where $d_1,d_2,\dots,d_n$ are derivations of $R$ commuting to each
other, and we examine properties of the ideals of $A_n$.
@article{10_2298_PIM0272107H, author = {Naoki Hamaguchi and Atsushi Nakajima}, title = {Derivations of {Skew} {Polynomial} {Rings}}, journal = {Publications de l'Institut Math\'ematique}, pages = {107 }, publisher = {mathdoc}, volume = {_N_S_72}, number = {86}, year = {2002}, doi = {10.2298/PIM0272107H}, zbl = {1206.16043}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272107H/} }
TY - JOUR AU - Naoki Hamaguchi AU - Atsushi Nakajima TI - Derivations of Skew Polynomial Rings JO - Publications de l'Institut Mathématique PY - 2002 SP - 107 VL - _N_S_72 IS - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272107H/ DO - 10.2298/PIM0272107H LA - en ID - 10_2298_PIM0272107H ER -
Naoki Hamaguchi; Atsushi Nakajima. Derivations of Skew Polynomial Rings. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 107 . doi: 10.2298/PIM0272107H
Cité par Sources :