Regular Variation and the Functional Central Limit Theorem for Heavy Tailed Random Vectors
Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 55
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Multivariable regular variation is used, along with the
martingale central limit theorem, to give a very simple proof that the
partial sum process for a sequence of independent, identically
distributed random vectors converges to a Brownian motion whenever the
summands belong to the generalized domain of attraction of a normal
law. This includes the heavy tailed case, where the covariance matrix
is undefined because some of the marginals have infinite variance.
DOI :
10.2298/PIM0271055M
Classification :
60F17 62E20
Keywords: martingale, invariance principle, Donsker's Theorem, partial sum process, generalized domain of attraction, operator normalization
Keywords: martingale, invariance principle, Donsker's Theorem, partial sum process, generalized domain of attraction, operator normalization
@article{10_2298_PIM0271055M, author = {Mark M. Meerschaert and Steven J. Sepanski}, title = {Regular {Variation} and the {Functional} {Central} {Limit} {Theorem} for {Heavy} {Tailed} {Random} {Vectors}}, journal = {Publications de l'Institut Math\'ematique}, pages = {55 }, publisher = {mathdoc}, volume = {_N_S_71}, number = {85}, year = {2002}, doi = {10.2298/PIM0271055M}, zbl = {1029.60019}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0271055M/} }
TY - JOUR AU - Mark M. Meerschaert AU - Steven J. Sepanski TI - Regular Variation and the Functional Central Limit Theorem for Heavy Tailed Random Vectors JO - Publications de l'Institut Mathématique PY - 2002 SP - 55 VL - _N_S_71 IS - 85 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0271055M/ DO - 10.2298/PIM0271055M LA - en ID - 10_2298_PIM0271055M ER -
%0 Journal Article %A Mark M. Meerschaert %A Steven J. Sepanski %T Regular Variation and the Functional Central Limit Theorem for Heavy Tailed Random Vectors %J Publications de l'Institut Mathématique %D 2002 %P 55 %V _N_S_71 %N 85 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0271055M/ %R 10.2298/PIM0271055M %G en %F 10_2298_PIM0271055M
Mark M. Meerschaert; Steven J. Sepanski. Regular Variation and the Functional Central Limit Theorem for Heavy Tailed Random Vectors. Publications de l'Institut Mathématique, _N_S_71 (2002) no. 85, p. 55 . doi: 10.2298/PIM0271055M
Cité par Sources :