Groupoids assigned to relational systems
Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 15-23
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By a relational system we mean a couple $(A,R)$ where $A$ is a set and $R$ is a binary relation on $A$, i.e.\ $R\subseteq A\times A$. To every directed relational system $\mathcal {A}=(A,R)$ we assign a groupoid ${\mathcal G}({\mathcal A})=(A,\cdot )$ on the same base set where $xy=y$ if and only if $(x,y)\in R$. We characterize basic properties of $R$ by means of identities satisfied by ${\mathcal G}({\mathcal A})$ and show how homomorphisms between those groupoids are related to certain homomorphisms of relational systems.
DOI :
10.21136/MB.2013.143226
Classification :
08A02, 20N02
Keywords: relational system; groupoid; directed system; $g$-homomorphism
Keywords: relational system; groupoid; directed system; $g$-homomorphism
@article{10_21136_MB_2013_143226,
author = {Chajda, Ivan and L\"anger, Helmut},
title = {Groupoids assigned to relational systems},
journal = {Mathematica Bohemica},
pages = {15--23},
publisher = {mathdoc},
volume = {138},
number = {1},
year = {2013},
doi = {10.21136/MB.2013.143226},
mrnumber = {3076217},
zbl = {1274.08002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143226/}
}
TY - JOUR AU - Chajda, Ivan AU - Länger, Helmut TI - Groupoids assigned to relational systems JO - Mathematica Bohemica PY - 2013 SP - 15 EP - 23 VL - 138 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2013.143226/ DO - 10.21136/MB.2013.143226 LA - en ID - 10_21136_MB_2013_143226 ER -
Chajda, Ivan; Länger, Helmut. Groupoids assigned to relational systems. Mathematica Bohemica, Tome 138 (2013) no. 1, pp. 15-23. doi: 10.21136/MB.2013.143226
Cité par Sources :