Second order difference inclusions of monotone type
Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 123-130
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The existence of anti-periodic solutions is studied for a second order difference inclusion associated with a maximal monotone operator in Hilbert spaces. It is the discrete analogue of a well-studied class of differential equations.
DOI :
10.21136/MB.2012.142858
Classification :
34A60, 34G25, 39A12, 39A23, 47H05
Keywords: anti-periodic solution; maximal monotone operator; Yosida approximation
Keywords: anti-periodic solution; maximal monotone operator; Yosida approximation
@article{10_21136_MB_2012_142858,
author = {Apreutesei, G. and Apreutesei, N.},
title = {Second order difference inclusions of monotone type},
journal = {Mathematica Bohemica},
pages = {123--130},
publisher = {mathdoc},
volume = {137},
number = {2},
year = {2012},
doi = {10.21136/MB.2012.142858},
mrnumber = {2978258},
zbl = {1265.39006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142858/}
}
TY - JOUR AU - Apreutesei, G. AU - Apreutesei, N. TI - Second order difference inclusions of monotone type JO - Mathematica Bohemica PY - 2012 SP - 123 EP - 130 VL - 137 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2012.142858/ DO - 10.21136/MB.2012.142858 LA - en ID - 10_21136_MB_2012_142858 ER -
Apreutesei, G.; Apreutesei, N. Second order difference inclusions of monotone type. Mathematica Bohemica, Tome 137 (2012) no. 2, pp. 123-130. doi: 10.21136/MB.2012.142858
Cité par Sources :