Spectrum of the weighted Laplace operator in unbounded domains
Mathematica Bohemica, Tome 136 (2011) no. 4, pp. 415-427
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate the spectral properties of the differential operator $-r^s \Delta $, $s\ge 0$ with the Dirichlet boundary condition in unbounded domains whose boundaries satisfy some geometrical condition. Considering this operator as a self-adjoint operator in the space with the norm $\|u\|^2_{L_{2, s} (\Omega )}= \int _{\Omega } r^{-s} |u|^2 {\rm d} x $, we study the structure of the spectrum with respect to the parameter $s$. Further we give an estimate of the rate of condensation of discrete spectra when it changes to continuous.
DOI :
10.21136/MB.2011.141701
Classification :
35J15, 35J20, 35J25, 35P05, 35P15
Keywords: Laplace operator; multiplicative perturbation; Dirichlet problem; Friedrichs extension; purely discrete spectra; purely continuous spectra
Keywords: Laplace operator; multiplicative perturbation; Dirichlet problem; Friedrichs extension; purely discrete spectra; purely continuous spectra
@article{10_21136_MB_2011_141701,
author = {Filinovskiy, Alexey},
title = {Spectrum of the weighted {Laplace} operator in unbounded domains},
journal = {Mathematica Bohemica},
pages = {415--427},
publisher = {mathdoc},
volume = {136},
number = {4},
year = {2011},
doi = {10.21136/MB.2011.141701},
mrnumber = {2985551},
zbl = {1249.35076},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141701/}
}
TY - JOUR AU - Filinovskiy, Alexey TI - Spectrum of the weighted Laplace operator in unbounded domains JO - Mathematica Bohemica PY - 2011 SP - 415 EP - 427 VL - 136 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141701/ DO - 10.21136/MB.2011.141701 LA - en ID - 10_21136_MB_2011_141701 ER -
Filinovskiy, Alexey. Spectrum of the weighted Laplace operator in unbounded domains. Mathematica Bohemica, Tome 136 (2011) no. 4, pp. 415-427. doi: 10.21136/MB.2011.141701
Cité par Sources :