Some cohomological aspects of the Banach fixed point principle
Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 333-336
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $T\colon X\to X$ be a continuous selfmap of a compact metrizable space $X$. We prove the equivalence of the following two statements: (1) The mapping $T$ is a Banach contraction relative to some compatible metric on $X$. (2) There is a countable point separating family $\mathcal {F}\subset \mathcal {C}(X)$ of non-negative functions $f\in \mathcal {C}(X)$ such that for every $f\in \mathcal {F}$ there is $g\in \mathcal {C}(X)$ with $f=g-g\circ T$.
DOI :
10.21136/MB.2011.141653
Classification :
54H20, 54H25
Keywords: Banach contraction; cohomology; cocycle; coboundary; separating family; core
Keywords: Banach contraction; cohomology; cocycle; coboundary; separating family; core
@article{10_21136_MB_2011_141653,
author = {Jano\v{s}, Ludv{\'\i}k},
title = {Some cohomological aspects of the {Banach} fixed point principle},
journal = {Mathematica Bohemica},
pages = {333--336},
publisher = {mathdoc},
volume = {136},
number = {3},
year = {2011},
doi = {10.21136/MB.2011.141653},
mrnumber = {2893980},
zbl = {1249.54081},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141653/}
}
TY - JOUR AU - Janoš, Ludvík TI - Some cohomological aspects of the Banach fixed point principle JO - Mathematica Bohemica PY - 2011 SP - 333 EP - 336 VL - 136 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141653/ DO - 10.21136/MB.2011.141653 LA - en ID - 10_21136_MB_2011_141653 ER -
Janoš, Ludvík. Some cohomological aspects of the Banach fixed point principle. Mathematica Bohemica, Tome 136 (2011) no. 3, pp. 333-336. doi: 10.21136/MB.2011.141653
Cité par Sources :