Locally spectrally bounded linear maps
Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 81-89
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let ${\mathcal L}({\mathcal H})$ be the algebra of all bounded linear operators on a complex Hilbert space ${\mathcal H}$. We characterize locally spectrally bounded linear maps from ${\mathcal L}({\mathcal H})$ onto itself. As a consequence, we describe linear maps from ${\mathcal L}({\mathcal H})$ onto itself that compress the local spectrum.
DOI :
10.21136/MB.2011.141452
Classification :
47A10, 47A53, 47B49
Keywords: local spectrum; local spectral radius; linear preservers
Keywords: local spectrum; local spectral radius; linear preservers
@article{10_21136_MB_2011_141452,
author = {Bendaoud, M. and Sarih, M.},
title = {Locally spectrally bounded linear maps},
journal = {Mathematica Bohemica},
pages = {81--89},
publisher = {mathdoc},
volume = {136},
number = {1},
year = {2011},
doi = {10.21136/MB.2011.141452},
mrnumber = {2807711},
zbl = {1216.47066},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141452/}
}
TY - JOUR AU - Bendaoud, M. AU - Sarih, M. TI - Locally spectrally bounded linear maps JO - Mathematica Bohemica PY - 2011 SP - 81 EP - 89 VL - 136 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141452/ DO - 10.21136/MB.2011.141452 LA - en ID - 10_21136_MB_2011_141452 ER -
Bendaoud, M.; Sarih, M. Locally spectrally bounded linear maps. Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 81-89. doi: 10.21136/MB.2011.141452
Cité par Sources :