Functigraphs: An extension of permutation graphs
Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 27-37
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G_1$ and $G_2$ be copies of a graph $G$, and let $f\colon V(G_1) \rightarrow V(G_2)$ be a function. Then a functigraph $C(G, f)=(V, E)$ is a generalization of a permutation graph, where $V=V(G_1) \cup V(G_2)$ and $E=E(G_1) \cup E(G_2)\cup \{uv \colon u \in V(G_1), v \in V(G_2),v=f(u)\}$. In this paper, we study colorability and planarity of functigraphs.
DOI :
10.21136/MB.2011.141447
Classification :
05C10, 05C15
Keywords: permutation graph; generalized Petersen graph; functigraph
Keywords: permutation graph; generalized Petersen graph; functigraph
@article{10_21136_MB_2011_141447,
author = {Chen, Andrew and Ferrero, Daniela and Gera, Ralucca and Yi, Eunjeong},
title = {Functigraphs: {An} extension of permutation graphs},
journal = {Mathematica Bohemica},
pages = {27--37},
publisher = {mathdoc},
volume = {136},
number = {1},
year = {2011},
doi = {10.21136/MB.2011.141447},
mrnumber = {2807706},
zbl = {1224.05165},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141447/}
}
TY - JOUR AU - Chen, Andrew AU - Ferrero, Daniela AU - Gera, Ralucca AU - Yi, Eunjeong TI - Functigraphs: An extension of permutation graphs JO - Mathematica Bohemica PY - 2011 SP - 27 EP - 37 VL - 136 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141447/ DO - 10.21136/MB.2011.141447 LA - en ID - 10_21136_MB_2011_141447 ER -
%0 Journal Article %A Chen, Andrew %A Ferrero, Daniela %A Gera, Ralucca %A Yi, Eunjeong %T Functigraphs: An extension of permutation graphs %J Mathematica Bohemica %D 2011 %P 27-37 %V 136 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2011.141447/ %R 10.21136/MB.2011.141447 %G en %F 10_21136_MB_2011_141447
Chen, Andrew; Ferrero, Daniela; Gera, Ralucca; Yi, Eunjeong. Functigraphs: An extension of permutation graphs. Mathematica Bohemica, Tome 136 (2011) no. 1, pp. 27-37. doi: 10.21136/MB.2011.141447
Cité par Sources :