The rank of a commutative semigroup
Mathematica Bohemica, Tome 134 (2009) no. 3, pp. 301-318
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The concept of rank of a commutative cancellative semigroup is extended to all commutative semigroups $S$ by defining $\mathop{\rm rank}S$ as the supremum of cardinalities of finite independent subsets of $S$. Representing such a semigroup $S$ as a semilattice $Y$ of (archimedean) components $S_\alpha $, we prove that $\mathop{\rm rank}S$ is the supremum of ranks of various $S_\alpha $. Representing a commutative separative semigroup $S$ as a semilattice of its (cancellative) archimedean components, the main result of the paper provides several characterizations of $\mathop{\rm rank}S$; in particular if $\mathop{\rm rank}S$ is finite. Subdirect products of a semilattice and a commutative cancellative semigroup are treated briefly. We give a classification of all commutative separative semigroups which admit a generating set of one or two elements, and compute their ranks.
DOI :
10.21136/MB.2009.140663
Classification :
20M05, 20M10, 20M14
Keywords: semigroup; commutative semigroup; independent subset; rank; separative semigroup; power cancellative semigroup; archimedean component
Keywords: semigroup; commutative semigroup; independent subset; rank; separative semigroup; power cancellative semigroup; archimedean component
@article{10_21136_MB_2009_140663,
author = {Cegarra, Antonio M. and Petrich, Mario},
title = {The rank of a commutative semigroup},
journal = {Mathematica Bohemica},
pages = {301--318},
publisher = {mathdoc},
volume = {134},
number = {3},
year = {2009},
doi = {10.21136/MB.2009.140663},
mrnumber = {2561308},
zbl = {1197.20051},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140663/}
}
TY - JOUR AU - Cegarra, Antonio M. AU - Petrich, Mario TI - The rank of a commutative semigroup JO - Mathematica Bohemica PY - 2009 SP - 301 EP - 318 VL - 134 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140663/ DO - 10.21136/MB.2009.140663 LA - en ID - 10_21136_MB_2009_140663 ER -
Cegarra, Antonio M.; Petrich, Mario. The rank of a commutative semigroup. Mathematica Bohemica, Tome 134 (2009) no. 3, pp. 301-318. doi: 10.21136/MB.2009.140663
Cité par Sources :