On Riesz homomorphisms in unital $f$-algebras
Mathematica Bohemica, Tome 134 (2009) no. 2, pp. 121-131
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The main topic of the first section of this paper is the following theorem: let $A$ be an Archimedean $f$-algebra with unit element $e$, and $T\: A\rightarrow A$ a Riesz homomorphism such that $T^2(f)=T(fT(e))$ for all $f\in A$. Then every Riesz homomorphism extension $\widetilde T$ of $T$ from the Dedekind completion $A^{\delta }$ of $A$ into itself satisfies $\widetilde T^2(f)=\widetilde T(fT(e))$ for all $f\in A^{\delta }$. In the second section this result is applied in several directions.\ As a first application it is applied to show a result about extensions of positive projections to the Dedekind completion. A second application of the above result is a new approach to the Dedekind completion of commutative $d$-algebras.
DOI :
10.21136/MB.2009.140648
Classification :
06F25, 46A40
Keywords: vector lattice; $d$-algebra; $f$-algebra
Keywords: vector lattice; $d$-algebra; $f$-algebra
@article{10_21136_MB_2009_140648,
author = {Chil, Elmiloud},
title = {On {Riesz} homomorphisms in unital $f$-algebras},
journal = {Mathematica Bohemica},
pages = {121--131},
publisher = {mathdoc},
volume = {134},
number = {2},
year = {2009},
doi = {10.21136/MB.2009.140648},
mrnumber = {2535141},
zbl = {1212.06043},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140648/}
}
TY - JOUR AU - Chil, Elmiloud TI - On Riesz homomorphisms in unital $f$-algebras JO - Mathematica Bohemica PY - 2009 SP - 121 EP - 131 VL - 134 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2009.140648/ DO - 10.21136/MB.2009.140648 LA - en ID - 10_21136_MB_2009_140648 ER -
Chil, Elmiloud. On Riesz homomorphisms in unital $f$-algebras. Mathematica Bohemica, Tome 134 (2009) no. 2, pp. 121-131. doi: 10.21136/MB.2009.140648
Cité par Sources :