Free actions on semiprime rings
Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 197-208
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We identify some situations where mappings related to left centralizers, derivations and generalized $(\alpha ,\beta )$-derivations are free actions on semiprime rings. We show that for a left centralizer, or a derivation $T$, of a semiprime ring $R$ the mapping $\psi \: R \rightarrow R$ defined by $\psi (x)=T(x) x - x T(x)$ for all $x \in R$ is a free action. We also show that for a generalized $(\alpha , \beta )$-derivation $F$ of a semiprime ring $R,$ with associated $(\alpha , \beta )$-derivation $d,$ a dependent element $a$ of $F$ is also a dependent element of $\alpha + d.$ Furthermore, we prove that for a centralizer $f$ and a derivation $d$ of a semiprime ring $R$, $\psi = d\circ f$ is a free action.
DOI :
10.21136/MB.2008.134055
Classification :
16N60, 16W20, 16W25
Keywords: prime ring; semiprime ring; dependent element; free action; centralizer; derivation
Keywords: prime ring; semiprime ring; dependent element; free action; centralizer; derivation
@article{10_21136_MB_2008_134055,
author = {Chaudhry, Muhammad Anwar and Samman, Mohammad S.},
title = {Free actions on semiprime rings},
journal = {Mathematica Bohemica},
pages = {197--208},
publisher = {mathdoc},
volume = {133},
number = {2},
year = {2008},
doi = {10.21136/MB.2008.134055},
mrnumber = {2428315},
zbl = {1170.16026},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.134055/}
}
TY - JOUR AU - Chaudhry, Muhammad Anwar AU - Samman, Mohammad S. TI - Free actions on semiprime rings JO - Mathematica Bohemica PY - 2008 SP - 197 EP - 208 VL - 133 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2008.134055/ DO - 10.21136/MB.2008.134055 LA - en ID - 10_21136_MB_2008_134055 ER -
Chaudhry, Muhammad Anwar; Samman, Mohammad S. Free actions on semiprime rings. Mathematica Bohemica, Tome 133 (2008) no. 2, pp. 197-208. doi: 10.21136/MB.2008.134055
Cité par Sources :