A note on congruence systems of MS-algebras
Mathematica Bohemica, Tome 132 (2007) no. 4, pp. 337-343
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $L$ be an MS-algebra with congruence permutable skeleton. We prove that solving a system of congruences $(\theta _{1},\ldots ,\theta _{n};x_{1} ,\ldots ,x_{n})$ in $L$ can be reduced to solving the restriction of the system to the skeleton of $L$, plus solving the restrictions of the system to the intervals $[x_{1},\bar{\bar{x}}_{1}],\dots ,[x_{n},\bar{ \bar{x}}_{n}].$
DOI :
10.21136/MB.2007.133963
Classification :
06-02, 06D30
Keywords: MS-algebra; permutable congruence; congruence system
Keywords: MS-algebra; permutable congruence; congruence system
@article{10_21136_MB_2007_133963,
author = {Campercholi, M. and Vaggione, D.},
title = {A note on congruence systems of {MS-algebras}},
journal = {Mathematica Bohemica},
pages = {337--343},
publisher = {mathdoc},
volume = {132},
number = {4},
year = {2007},
doi = {10.21136/MB.2007.133963},
mrnumber = {2365320},
zbl = {1174.06312},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133963/}
}
TY - JOUR AU - Campercholi, M. AU - Vaggione, D. TI - A note on congruence systems of MS-algebras JO - Mathematica Bohemica PY - 2007 SP - 337 EP - 343 VL - 132 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133963/ DO - 10.21136/MB.2007.133963 LA - en ID - 10_21136_MB_2007_133963 ER -
Campercholi, M.; Vaggione, D. A note on congruence systems of MS-algebras. Mathematica Bohemica, Tome 132 (2007) no. 4, pp. 337-343. doi: 10.21136/MB.2007.133963
Cité par Sources :