On van Douwen spaces and retracts of $\beta {\mathbb{N}}$
Mathematica Bohemica, Tome 132 (2007) no. 4, pp. 345-368
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Eric van Douwen produced in 1993 a maximal crowded extremally disconnected regular space and showed that its Stone-Čech compactification is an at most two-to-one image of $\beta {\mathbb{N}}$. We prove that there are non-homeomorphic such images. We also develop some related properties of spaces which are absolute retracts of $\beta {\mathbb{N}}$ expanding on earlier work of Balcar and Błaszczyk (1990) and Simon (1987).
DOI :
10.21136/MB.2007.133962
Classification :
54A25, 54A35, 54C15, 54D35
Keywords: $\beta \mathbb{N}$; retracts; two to one map; Stone-Čech compactification
Keywords: $\beta \mathbb{N}$; retracts; two to one map; Stone-Čech compactification
@article{10_21136_MB_2007_133962,
author = {Dow, Alan},
title = {On van {Douwen} spaces and retracts of $\beta {\mathbb{N}}$},
journal = {Mathematica Bohemica},
pages = {345--368},
publisher = {mathdoc},
volume = {132},
number = {4},
year = {2007},
doi = {10.21136/MB.2007.133962},
mrnumber = {2365321},
zbl = {1174.54003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133962/}
}
TY - JOUR
AU - Dow, Alan
TI - On van Douwen spaces and retracts of $\beta {\mathbb{N}}$
JO - Mathematica Bohemica
PY - 2007
SP - 345
EP - 368
VL - 132
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2007.133962/
DO - 10.21136/MB.2007.133962
LA - en
ID - 10_21136_MB_2007_133962
ER -
Dow, Alan. On van Douwen spaces and retracts of $\beta {\mathbb{N}}$. Mathematica Bohemica, Tome 132 (2007) no. 4, pp. 345-368. doi: 10.21136/MB.2007.133962
Cité par Sources :