Multipliers for generalized Riemann integrals in the real line
Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 161-166
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We use an elementary method to prove that each $BV$ function is a multiplier for the $C$-integral.
DOI :
10.21136/MB.2006.134090
Classification :
26A39
Keywords: multiplier; $C$-integral; $BV$ function
Keywords: multiplier; $C$-integral; $BV$ function
@article{10_21136_MB_2006_134090,
author = {Lee, Tuo-Yeong},
title = {Multipliers for generalized {Riemann} integrals in the real line},
journal = {Mathematica Bohemica},
pages = {161--166},
publisher = {mathdoc},
volume = {131},
number = {2},
year = {2006},
doi = {10.21136/MB.2006.134090},
mrnumber = {2242842},
zbl = {1112.26009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134090/}
}
TY - JOUR AU - Lee, Tuo-Yeong TI - Multipliers for generalized Riemann integrals in the real line JO - Mathematica Bohemica PY - 2006 SP - 161 EP - 166 VL - 131 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.134090/ DO - 10.21136/MB.2006.134090 LA - en ID - 10_21136_MB_2006_134090 ER -
Lee, Tuo-Yeong. Multipliers for generalized Riemann integrals in the real line. Mathematica Bohemica, Tome 131 (2006) no. 2, pp. 161-166. doi: 10.21136/MB.2006.134090
Cité par Sources :