Strong singularities in mixed boundary value problems
Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 393-409
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study singular boundary value problems with mixed boundary conditions of the form \[ (p(t)u^{\prime })^{\prime }+ p(t)f(t,u,p(t)u^{\prime })=0, \quad \lim _{t\rightarrow 0+}p(t)u^{\prime }(t)=0, \quad u(T)=0, \] where $[0,T]\subset {\mathbb{R}}.$ We assume that ${\mathbb{R}}^2,$ $f$ satisfies the Carathéodory conditions on $(0,T)\times $ $p\in C[0,T]$ and ${1/p}$ need not be integrable on $[0,T].$ Here $f$ can have time singularities at $t=0$ and/or $t=T$ and a space singularity at $x=0$. Moreover, $f$ can change its sign. Provided $f$ is nonnegative it can have even a space singularity at $y=0.$ We present conditions for the existence of solutions positive on $[0,T).$
DOI :
10.21136/MB.2006.133975
Classification :
34B15, 34B16, 34B18
Keywords: singular mixed boundary value problem; positive solution; lower function; upper function; convergence of approximate regular problems
Keywords: singular mixed boundary value problem; positive solution; lower function; upper function; convergence of approximate regular problems
@article{10_21136_MB_2006_133975,
author = {Rach\r{u}nkov\'a, Irena},
title = {Strong singularities in mixed boundary value problems},
journal = {Mathematica Bohemica},
pages = {393--409},
publisher = {mathdoc},
volume = {131},
number = {4},
year = {2006},
doi = {10.21136/MB.2006.133975},
mrnumber = {2273930},
zbl = {1114.34020},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133975/}
}
TY - JOUR AU - Rachůnková, Irena TI - Strong singularities in mixed boundary value problems JO - Mathematica Bohemica PY - 2006 SP - 393 EP - 409 VL - 131 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133975/ DO - 10.21136/MB.2006.133975 LA - en ID - 10_21136_MB_2006_133975 ER -
Rachůnková, Irena. Strong singularities in mixed boundary value problems. Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 393-409. doi: 10.21136/MB.2006.133975
Cité par Sources :