Maple tools for the Kurzweil integral
Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 337-346
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Riemann sums based on $\delta $-fine partitions are illustrated with a Maple procedure.
DOI :
10.21136/MB.2006.133971
Classification :
26-04, 26A39, 28-01, 28-02, 28-04, 28E99
Keywords: Kurzweil’s integral; fine partition; Riemann sum
Keywords: Kurzweil’s integral; fine partition; Riemann sum
@article{10_21136_MB_2006_133971,
author = {Adams, Peter and V\'yborn\'y, Rudolf},
title = {Maple tools for the {Kurzweil} integral},
journal = {Mathematica Bohemica},
pages = {337--346},
publisher = {mathdoc},
volume = {131},
number = {4},
year = {2006},
doi = {10.21136/MB.2006.133971},
mrnumber = {2273926},
zbl = {1112.28015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133971/}
}
TY - JOUR AU - Adams, Peter AU - Výborný, Rudolf TI - Maple tools for the Kurzweil integral JO - Mathematica Bohemica PY - 2006 SP - 337 EP - 346 VL - 131 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133971/ DO - 10.21136/MB.2006.133971 LA - en ID - 10_21136_MB_2006_133971 ER -
Adams, Peter; Výborný, Rudolf. Maple tools for the Kurzweil integral. Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 337-346. doi: 10.21136/MB.2006.133971
Cité par Sources :