Infinite-dimensional complex projective spaces and complete intersections
Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 419-425
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $V$ be an infinite-dimensional complex Banach space and $X \subset {\mathbf {P}}(V)$ a closed analytic subset with finite codimension. We give a condition on $X$ which implies that $X$ is a complete intersection. We conjecture that the result should be true for more general topological vector spaces.
DOI :
10.21136/MB.2006.133969
Classification :
32K05, 58B20
Keywords: infinite-dimensional complex projective space; infinite-dimensional complex manifold; complete intersection; complex Banach space; complex Banach manifold
Keywords: infinite-dimensional complex projective space; infinite-dimensional complex manifold; complete intersection; complex Banach space; complex Banach manifold
@article{10_21136_MB_2006_133969, author = {Ballico, E.}, title = {Infinite-dimensional complex projective spaces and complete intersections}, journal = {Mathematica Bohemica}, pages = {419--425}, publisher = {mathdoc}, volume = {131}, number = {4}, year = {2006}, doi = {10.21136/MB.2006.133969}, mrnumber = {2273932}, zbl = {1109.32015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/} }
TY - JOUR AU - Ballico, E. TI - Infinite-dimensional complex projective spaces and complete intersections JO - Mathematica Bohemica PY - 2006 SP - 419 EP - 425 VL - 131 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/ DO - 10.21136/MB.2006.133969 LA - en ID - 10_21136_MB_2006_133969 ER -
%0 Journal Article %A Ballico, E. %T Infinite-dimensional complex projective spaces and complete intersections %J Mathematica Bohemica %D 2006 %P 419-425 %V 131 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2006.133969/ %R 10.21136/MB.2006.133969 %G en %F 10_21136_MB_2006_133969
Ballico, E. Infinite-dimensional complex projective spaces and complete intersections. Mathematica Bohemica, Tome 131 (2006) no. 4, pp. 419-425. doi: 10.21136/MB.2006.133969
Cité par Sources :