Normalization of $MV$-algebras
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 283-300
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider algebras determined by all normal identities of $MV$-algebras, i.e. algebras of many-valued logics. For such algebras, we present a representation based on a normalization of a sectionally involutioned lattice, i.e. a $q$-lattice, and another one based on a normalization of a lattice-ordered group.
DOI :
10.21136/MB.2005.134099
Classification :
06D05, 06D35, 06F20, 08B20
Keywords: $MV$-algebra; abelian lattice-ordered group; $q$-lattice; normalization of a variety
Keywords: $MV$-algebra; abelian lattice-ordered group; $q$-lattice; normalization of a variety
@article{10_21136_MB_2005_134099,
author = {Chajda, I. and Hala\v{s}, R. and K\"uhr, J. and Van\v{z}urov\'a, A.},
title = {Normalization of $MV$-algebras},
journal = {Mathematica Bohemica},
pages = {283--300},
publisher = {mathdoc},
volume = {130},
number = {3},
year = {2005},
doi = {10.21136/MB.2005.134099},
mrnumber = {2164658},
zbl = {1112.06012},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134099/}
}
TY - JOUR AU - Chajda, I. AU - Halaš, R. AU - Kühr, J. AU - Vanžurová, A. TI - Normalization of $MV$-algebras JO - Mathematica Bohemica PY - 2005 SP - 283 EP - 300 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134099/ DO - 10.21136/MB.2005.134099 LA - en ID - 10_21136_MB_2005_134099 ER -
Chajda, I.; Halaš, R.; Kühr, J.; Vanžurová, A. Normalization of $MV$-algebras. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 283-300. doi: 10.21136/MB.2005.134099
Cité par Sources :