Domination numbers on the complement of the Boolean function graph of a graph
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 247-263
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For any graph $G$, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of $G$ respectively. The Boolean function graph $B(G, L(G), \mathop {\mathrm NINC})$ of $G$ is a graph with vertex set $V(G)\cup E(G)$ and two vertices in $B(G, L(G), \mathop {\mathrm NINC})$ are adjacent if and only if they correspond to two adjacent vertices of $G$, two adjacent edges of $G$ or to a vertex and an edge not incident to it in $G$. For brevity, this graph is denoted by $B_{1}(G)$. In this paper, we determine domination number, independent, connected, total, point-set, restrained, split and non-split domination numbers in the complement $\bar{B}_{1}(G)$ of $B_{1}(G)$ and obtain bounds for the above numbers.
DOI :
10.21136/MB.2005.134098
Classification :
05C15, 05C69
Keywords: domination number; eccentricity; radius; diameter; neighborhood; perfect matching; Boolean function graph
Keywords: domination number; eccentricity; radius; diameter; neighborhood; perfect matching; Boolean function graph
@article{10_21136_MB_2005_134098,
author = {Janakiraman, T. N. and Muthammai, S. and Bhanumathi, M.},
title = {Domination numbers on the complement of the {Boolean} function graph of a graph},
journal = {Mathematica Bohemica},
pages = {247--263},
publisher = {mathdoc},
volume = {130},
number = {3},
year = {2005},
doi = {10.21136/MB.2005.134098},
mrnumber = {2164655},
zbl = {1111.05076},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134098/}
}
TY - JOUR AU - Janakiraman, T. N. AU - Muthammai, S. AU - Bhanumathi, M. TI - Domination numbers on the complement of the Boolean function graph of a graph JO - Mathematica Bohemica PY - 2005 SP - 247 EP - 263 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134098/ DO - 10.21136/MB.2005.134098 LA - en ID - 10_21136_MB_2005_134098 ER -
%0 Journal Article %A Janakiraman, T. N. %A Muthammai, S. %A Bhanumathi, M. %T Domination numbers on the complement of the Boolean function graph of a graph %J Mathematica Bohemica %D 2005 %P 247-263 %V 130 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134098/ %R 10.21136/MB.2005.134098 %G en %F 10_21136_MB_2005_134098
Janakiraman, T. N.; Muthammai, S.; Bhanumathi, M. Domination numbers on the complement of the Boolean function graph of a graph. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 247-263. doi: 10.21136/MB.2005.134098
Cité par Sources :