Global domination and neighborhood numbers in Boolean function graph of a graph
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 231-246
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For any graph $G$, let $V(G)$ and $E(G)$ denote the vertex set and the edge set of $G$ respectively. The Boolean function graph $B(G, L(G), \mathop {\mathrm NINC})$ of $G$ is a graph with vertex set $V(G)\cup E(G)$ and two vertices in $B(G, L(G), \mathop {\mathrm NINC})$ are adjacent if and only if they correspond to two adjacent vertices of $G$, two adjacent edges of $G$ or to a vertex and an edge not incident to it in $G$. In this paper, global domination number, total global domination number, global point-set domination number and neighborhood number for this graph are obtained.
DOI :
10.21136/MB.2005.134094
Classification :
05C15, 05C69
Keywords: Boolean function graph; global domination number; neighborhood number
Keywords: Boolean function graph; global domination number; neighborhood number
@article{10_21136_MB_2005_134094,
author = {Janakiraman, T. N. and Muthammai, S. and Bhanumathi, M.},
title = {Global domination and neighborhood numbers {in~Boolean} function graph of a graph},
journal = {Mathematica Bohemica},
pages = {231--246},
publisher = {mathdoc},
volume = {130},
number = {3},
year = {2005},
doi = {10.21136/MB.2005.134094},
mrnumber = {2164654},
zbl = {1111.05075},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134094/}
}
TY - JOUR AU - Janakiraman, T. N. AU - Muthammai, S. AU - Bhanumathi, M. TI - Global domination and neighborhood numbers in Boolean function graph of a graph JO - Mathematica Bohemica PY - 2005 SP - 231 EP - 246 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134094/ DO - 10.21136/MB.2005.134094 LA - en ID - 10_21136_MB_2005_134094 ER -
%0 Journal Article %A Janakiraman, T. N. %A Muthammai, S. %A Bhanumathi, M. %T Global domination and neighborhood numbers in Boolean function graph of a graph %J Mathematica Bohemica %D 2005 %P 231-246 %V 130 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134094/ %R 10.21136/MB.2005.134094 %G en %F 10_21136_MB_2005_134094
Janakiraman, T. N.; Muthammai, S.; Bhanumathi, M. Global domination and neighborhood numbers in Boolean function graph of a graph. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 231-246. doi: 10.21136/MB.2005.134094
Cité par Sources :