The converse problem for a generalized Dhombres functional equation
Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 301-308
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the functional equation $f(xf(x))=\varphi (f(x))$ where $\varphi \: J\rightarrow J$ is a given homeomorphism of an open interval $J\subset (0,\infty )$ and $f\: (0,\infty ) \rightarrow J$ is an unknown continuous function. A characterization of the class $\mathcal S(J,\varphi )$ of continuous solutions $f$ is given in a series of papers by Kahlig and Smítal 1998–2002, and in a recent paper by Reich et al. 2004, in the case when $\varphi $ is increasing. In the present paper we solve the converse problem, for which continuous maps $f\: (0,\infty )\rightarrow J$, where $J$ is an interval, there is an increasing homeomorphism $\varphi $ of $J$ such that $f\in \mathcal S(J,\varphi )$. We also show why the similar problem for decreasing $\varphi $ is difficult.
DOI :
10.21136/MB.2005.134093
Classification :
26A18, 39B12, 39B22
Keywords: iterative functional equation; equation of invariant curves; general continuous solution; converse problem
Keywords: iterative functional equation; equation of invariant curves; general continuous solution; converse problem
@article{10_21136_MB_2005_134093, author = {Reich, L. and Sm{\'\i}tal, J. and \v{S}tef\'ankov\'a, M.}, title = {The converse problem for a generalized {Dhombres} functional equation}, journal = {Mathematica Bohemica}, pages = {301--308}, publisher = {mathdoc}, volume = {130}, number = {3}, year = {2005}, doi = {10.21136/MB.2005.134093}, mrnumber = {2164659}, zbl = {1110.39014}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/} }
TY - JOUR AU - Reich, L. AU - Smítal, J. AU - Štefánková, M. TI - The converse problem for a generalized Dhombres functional equation JO - Mathematica Bohemica PY - 2005 SP - 301 EP - 308 VL - 130 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/ DO - 10.21136/MB.2005.134093 LA - en ID - 10_21136_MB_2005_134093 ER -
%0 Journal Article %A Reich, L. %A Smítal, J. %A Štefánková, M. %T The converse problem for a generalized Dhombres functional equation %J Mathematica Bohemica %D 2005 %P 301-308 %V 130 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2005.134093/ %R 10.21136/MB.2005.134093 %G en %F 10_21136_MB_2005_134093
Reich, L.; Smítal, J.; Štefánková, M. The converse problem for a generalized Dhombres functional equation. Mathematica Bohemica, Tome 130 (2005) no. 3, pp. 301-308. doi: 10.21136/MB.2005.134093
Cité par Sources :