Multipliers of spaces of derivatives
Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 181-217
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For subspaces, $X$ and $Y$, of the space, $D$, of all derivatives $M(X,Y)$ denotes the set of all $g\in D$ such that $fg \in Y$ for all $f \in X$. Subspaces of $D$ are defined depending on a parameter $p \in [0,\infty ]$. In Section 6, $M(X,D)$ is determined for each of these subspaces and in Section 7, $M(X,Y)$ is found for $X$ and $Y$ any of these subspaces. In Section 3, $M(X,D)$ is determined for other spaces of functions on $[0,1]$ related to continuity and higher order differentiation.
DOI :
10.21136/MB.2004.133900
Classification :
26A21, 26A24, 47B37, 47B38
Keywords: spaces of derivatives; Peano derivatives; Lipschitz function; multiplication operator
Keywords: spaces of derivatives; Peano derivatives; Lipschitz function; multiplication operator
@article{10_21136_MB_2004_133900, author = {Ma\v{r}{\'\i}k, Jan and Weil, Clifford E.}, title = {Multipliers of spaces of derivatives}, journal = {Mathematica Bohemica}, pages = {181--217}, publisher = {mathdoc}, volume = {129}, number = {2}, year = {2004}, doi = {10.21136/MB.2004.133900}, mrnumber = {2073514}, zbl = {1051.26003}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133900/} }
TY - JOUR AU - Mařík, Jan AU - Weil, Clifford E. TI - Multipliers of spaces of derivatives JO - Mathematica Bohemica PY - 2004 SP - 181 EP - 217 VL - 129 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2004.133900/ DO - 10.21136/MB.2004.133900 LA - en ID - 10_21136_MB_2004_133900 ER -
Mařík, Jan; Weil, Clifford E. Multipliers of spaces of derivatives. Mathematica Bohemica, Tome 129 (2004) no. 2, pp. 181-217. doi: 10.21136/MB.2004.133900
Cité par Sources :