$N$-widths for singularly perturbed problems
Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 343-352
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Kolmogorov $N$-widths are an approximation theory concept that, for a given problem, yields information about the optimal rate of convergence attainable by any numerical method applied to that problem. We survey sharp bounds recently obtained for the $N$-widths of certain singularly perturbed convection-diffusion and reaction-diffusion boundary value problems.
DOI :
10.21136/MB.2002.134155
Classification :
34E15, 35B25, 35K57, 41A46, 65L10, 65L20, 65N15
Keywords: $N$-width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion
Keywords: $N$-width; singularly perturbed; differential equation; boundary value problem; convection-diffusion; reaction-diffusion
@article{10_21136_MB_2002_134155,
author = {Stynes, Martin and Kellogg, R. Bruce},
title = {$N$-widths for singularly perturbed problems},
journal = {Mathematica Bohemica},
pages = {343--352},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {2002},
doi = {10.21136/MB.2002.134155},
mrnumber = {1981538},
zbl = {1005.41009},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134155/}
}
TY - JOUR AU - Stynes, Martin AU - Kellogg, R. Bruce TI - $N$-widths for singularly perturbed problems JO - Mathematica Bohemica PY - 2002 SP - 343 EP - 352 VL - 127 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.134155/ DO - 10.21136/MB.2002.134155 LA - en ID - 10_21136_MB_2002_134155 ER -
Stynes, Martin; Kellogg, R. Bruce. $N$-widths for singularly perturbed problems. Mathematica Bohemica, Tome 127 (2002) no. 2, pp. 343-352. doi: 10.21136/MB.2002.134155
Cité par Sources :