On general solvability properties of $p$-Lapalacian-like equations
Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 103-122
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We discuss how the choice of the functional setting and the definition of the weak solution affect the existence and uniqueness of the solution to the equation \[ -\Delta _p u = f \ \text{in} \ \Omega , \] where $\Omega $ is a very general domain in $\mathbb{R}^N$, including the case $\Omega = \mathbb{R}^N$.
DOI :
10.21136/MB.2002.133987
Classification :
35B40, 35J15, 35J20, 35J60
Keywords: quasilinear elliptic equations; weak solutions; solvability
Keywords: quasilinear elliptic equations; weak solutions; solvability
@article{10_21136_MB_2002_133987,
author = {Dr\'abek, Pavel and Simader, Christian G.},
title = {On general solvability properties of $p${-Lapalacian-like} equations},
journal = {Mathematica Bohemica},
pages = {103--122},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {2002},
doi = {10.21136/MB.2002.133987},
mrnumber = {1895250},
zbl = {1030.35058},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/}
}
TY - JOUR AU - Drábek, Pavel AU - Simader, Christian G. TI - On general solvability properties of $p$-Lapalacian-like equations JO - Mathematica Bohemica PY - 2002 SP - 103 EP - 122 VL - 127 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/ DO - 10.21136/MB.2002.133987 LA - en ID - 10_21136_MB_2002_133987 ER -
%0 Journal Article %A Drábek, Pavel %A Simader, Christian G. %T On general solvability properties of $p$-Lapalacian-like equations %J Mathematica Bohemica %D 2002 %P 103-122 %V 127 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.2002.133987/ %R 10.21136/MB.2002.133987 %G en %F 10_21136_MB_2002_133987
Drábek, Pavel; Simader, Christian G. On general solvability properties of $p$-Lapalacian-like equations. Mathematica Bohemica, Tome 127 (2002) no. 1, pp. 103-122. doi: 10.21136/MB.2002.133987
Cité par Sources :