Pure subgroups
Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 649-652
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\lambda $ be an infinite cardinal. Set $\lambda _0=\lambda $, define $\lambda _{i+1}=2^{\lambda _i}$ for every $i=0,1,\dots $, take $\mu $ as the first cardinal with $\lambda _i\mu $, $i=0,1,\dots $ and put $\kappa = (\mu ^{\aleph _0})^+$. If $F$ is a torsion-free group of cardinality at least $\kappa $ and $K$ is its subgroup such that $F/K$ is torsion and $|F/K|\le \lambda $, then $K$ contains a non-zero subgroup pure in $F$. This generalizes the result from a previous paper dealing with $F/K$ $p$-primary.
DOI :
10.21136/MB.2001.134196
Classification :
20K20, 20K27
Keywords: torsion-free abelian groups; pure subgroup; $P$-pure subgroup
Keywords: torsion-free abelian groups; pure subgroup; $P$-pure subgroup
@article{10_21136_MB_2001_134196,
author = {Bican, Ladislav},
title = {Pure subgroups},
journal = {Mathematica Bohemica},
pages = {649--652},
publisher = {mathdoc},
volume = {126},
number = {3},
year = {2001},
doi = {10.21136/MB.2001.134196},
mrnumber = {1970267},
zbl = {0983.20054},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.134196/}
}
Bican, Ladislav. Pure subgroups. Mathematica Bohemica, Tome 126 (2001) no. 3, pp. 649-652. doi: 10.21136/MB.2001.134196
Cité par Sources :