On iterated limits of subsets of a convergence $\ell $-group
Mathematica Bohemica, Tome 126 (2001) no. 1, pp. 53-61
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we deal with the relation \[ \lim _\alpha \lim _\alpha X=\lim _\alpha X \] for a subset $X$ of $G$, where $G$ is an $\ell $-group and $\alpha $ is a sequential convergence on $G$.
DOI :
10.21136/MB.2001.133921
Classification :
06F15, 22C05
Keywords: convergence $\ell $-group; disjoint subset; direct product; lexico extension; sequential convergence
Keywords: convergence $\ell $-group; disjoint subset; direct product; lexico extension; sequential convergence
@article{10_21136_MB_2001_133921,
author = {Jakub{\'\i}k, J\'an},
title = {On iterated limits of subsets of a convergence $\ell $-group},
journal = {Mathematica Bohemica},
pages = {53--61},
publisher = {mathdoc},
volume = {126},
number = {1},
year = {2001},
doi = {10.21136/MB.2001.133921},
mrnumber = {1826470},
zbl = {0978.06008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133921/}
}
TY - JOUR AU - Jakubík, Ján TI - On iterated limits of subsets of a convergence $\ell $-group JO - Mathematica Bohemica PY - 2001 SP - 53 EP - 61 VL - 126 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2001.133921/ DO - 10.21136/MB.2001.133921 LA - en ID - 10_21136_MB_2001_133921 ER -
Jakubík, Ján. On iterated limits of subsets of a convergence $\ell $-group. Mathematica Bohemica, Tome 126 (2001) no. 1, pp. 53-61. doi: 10.21136/MB.2001.133921
Cité par Sources :