Nearly disjoint sequences in convergence $l$-groups
Mathematica Bohemica, Tome 125 (2000) no. 2, pp. 139-144
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For an abelian lattice ordered group $G$ let $\conv G$ be the system of all compatible convergences on $G$; this system is a meet semilattice but in general it fails to be a lattice. Let $\alpha_{nd}$ be the convergence on $G$ which is generated by the set of all nearly disjoint sequences in $G$, and let $\alpha$ be any element of $\conv G$. In the present paper we prove that the join $\alpha_{nd}\vee\alpha$ does exist in $\conv G$.
DOI :
10.21136/MB.2000.125958
Classification :
06F20, 22C05
Keywords: nearly disjoint sequence; strong convergence; convergence $\ell$-group
Keywords: nearly disjoint sequence; strong convergence; convergence $\ell$-group
@article{10_21136_MB_2000_125958,
author = {Jakub{\'\i}k, J\'an},
title = {Nearly disjoint sequences in convergence $l$-groups},
journal = {Mathematica Bohemica},
pages = {139--144},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {2000},
doi = {10.21136/MB.2000.125958},
mrnumber = {1768802},
zbl = {0967.06013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.125958/}
}
TY - JOUR AU - Jakubík, Ján TI - Nearly disjoint sequences in convergence $l$-groups JO - Mathematica Bohemica PY - 2000 SP - 139 EP - 144 VL - 125 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.2000.125958/ DO - 10.21136/MB.2000.125958 LA - en ID - 10_21136_MB_2000_125958 ER -
Jakubík, Ján. Nearly disjoint sequences in convergence $l$-groups. Mathematica Bohemica, Tome 125 (2000) no. 2, pp. 139-144. doi: 10.21136/MB.2000.125958
Cité par Sources :