A second look on definition and equivalent norms of Sobolev spaces
Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 315-328
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Sobolev's original definition of his spaces $L^{m,p}(\Omega)$ is revisited. It only assumed that $\Omega\subseteq\Bbb R^n$ is a domain. With elementary methods, essentially based on Poincare's inequality for balls (or cubes), the existence of intermediate derivates of functions $u\in L^{m,p}(\Omega)$ with respect to appropriate norms, and equivalence of these norms is proved.
DOI :
10.21136/MB.1999.126243
Classification :
46E35
Keywords: Sobolev spaces; Poincaré’s inequality; existence of intermediate derivates
Keywords: Sobolev spaces; Poincaré’s inequality; existence of intermediate derivates
@article{10_21136_MB_1999_126243,
author = {Naumann, J. and Simader, C. G.},
title = {A second look on definition and equivalent norms of {Sobolev} spaces},
journal = {Mathematica Bohemica},
pages = {315--328},
publisher = {mathdoc},
volume = {124},
number = {2-3},
year = {1999},
doi = {10.21136/MB.1999.126243},
mrnumber = {1780700},
zbl = {0941.46019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126243/}
}
TY - JOUR AU - Naumann, J. AU - Simader, C. G. TI - A second look on definition and equivalent norms of Sobolev spaces JO - Mathematica Bohemica PY - 1999 SP - 315 EP - 328 VL - 124 IS - 2-3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126243/ DO - 10.21136/MB.1999.126243 LA - en ID - 10_21136_MB_1999_126243 ER -
%0 Journal Article %A Naumann, J. %A Simader, C. G. %T A second look on definition and equivalent norms of Sobolev spaces %J Mathematica Bohemica %D 1999 %P 315-328 %V 124 %N 2-3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.126243/ %R 10.21136/MB.1999.126243 %G en %F 10_21136_MB_1999_126243
Naumann, J.; Simader, C. G. A second look on definition and equivalent norms of Sobolev spaces. Mathematica Bohemica, Tome 124 (1999) no. 2-3, pp. 315-328. doi: 10.21136/MB.1999.126243
Cité par Sources :