The non-coincidence of ordinary and Peano derivatives
Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 381-399
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $f H\subset\Bbb R\to\Bbb R$ be $k$ times differentiable in both the usual (iterative) and Peano senses. We investigate when the usual derivatives and the corresponding Peano derivatives are different and the nature of the set where they are different.
DOI :
10.21136/MB.1999.125997
Classification :
26A24
Keywords: Peano derivatives; nowhere dense perfect sets; porosity
Keywords: Peano derivatives; nowhere dense perfect sets; porosity
@article{10_21136_MB_1999_125997, author = {Buczolich, Zolt\'an and Weil, Clifford E.}, title = {The non-coincidence of ordinary and {Peano} derivatives}, journal = {Mathematica Bohemica}, pages = {381--399}, publisher = {mathdoc}, volume = {124}, number = {4}, year = {1999}, doi = {10.21136/MB.1999.125997}, mrnumber = {1722874}, zbl = {0936.26002}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/} }
TY - JOUR AU - Buczolich, Zoltán AU - Weil, Clifford E. TI - The non-coincidence of ordinary and Peano derivatives JO - Mathematica Bohemica PY - 1999 SP - 381 EP - 399 VL - 124 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/ DO - 10.21136/MB.1999.125997 LA - en ID - 10_21136_MB_1999_125997 ER -
%0 Journal Article %A Buczolich, Zoltán %A Weil, Clifford E. %T The non-coincidence of ordinary and Peano derivatives %J Mathematica Bohemica %D 1999 %P 381-399 %V 124 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.1999.125997/ %R 10.21136/MB.1999.125997 %G en %F 10_21136_MB_1999_125997
Buczolich, Zoltán; Weil, Clifford E. The non-coincidence of ordinary and Peano derivatives. Mathematica Bohemica, Tome 124 (1999) no. 4, pp. 381-399. doi: 10.21136/MB.1999.125997
Cité par Sources :