Transitivity and partial order
Mathematica Bohemica, Tome 122 (1997) no. 1, pp. 75-82
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we find a one-to-one correspondence between transitive relations and partial orders. On the basis of this correspondence we deduce the recurrence formula for enumeration of their numbers. We also determine the number of all transitive relations on an arbitrary $n$-element set up to $n=14$.
DOI :
10.21136/MB.1997.126183
Classification :
04A05, 05A15, 06A07, 54A10
Keywords: enumeration; transitivity; partial order
Keywords: enumeration; transitivity; partial order
@article{10_21136_MB_1997_126183,
author = {Kla\v{s}ka, Ji\v{r}{\'\i}},
title = {Transitivity and partial order},
journal = {Mathematica Bohemica},
pages = {75--82},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {1997},
doi = {10.21136/MB.1997.126183},
mrnumber = {1446401},
zbl = {0889.05008},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1997.126183/}
}
Klaška, Jiří. Transitivity and partial order. Mathematica Bohemica, Tome 122 (1997) no. 1, pp. 75-82. doi: 10.21136/MB.1997.126183
Cité par Sources :