Comparison theorems for differential equations of neutral type
Mathematica Bohemica, Tome 122 (1997) no. 2, pp. 181-189
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We are interested in comparing the oscillatory and asymptotic properties of the equations $L_n [x(t)-P(t) x(g(t))]+\delta f(t,x(h(t)))=0$ with those of the equations $M_n [x(t)-P(t) x(g(t))]+\delta Q(t)q(x(r(t)))=0.$
DOI :
10.21136/MB.1997.125913
Classification :
34K15, 34K25, 34K40
Keywords: neutral differential equations; oscillatory solutions; property $\Cal A$; property $\Cal B$; quasi-derivatives
Keywords: neutral differential equations; oscillatory solutions; property $\Cal A$; property $\Cal B$; quasi-derivatives
@article{10_21136_MB_1997_125913,
author = {R\r{u}\v{z}i\v{c}kov\'a, Miroslava},
title = {Comparison theorems for differential equations of neutral type},
journal = {Mathematica Bohemica},
pages = {181--189},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {1997},
doi = {10.21136/MB.1997.125913},
mrnumber = {1460948},
zbl = {0897.34066},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1997.125913/}
}
TY - JOUR AU - Růžičková, Miroslava TI - Comparison theorems for differential equations of neutral type JO - Mathematica Bohemica PY - 1997 SP - 181 EP - 189 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1997.125913/ DO - 10.21136/MB.1997.125913 LA - en ID - 10_21136_MB_1997_125913 ER -
Růžičková, Miroslava. Comparison theorems for differential equations of neutral type. Mathematica Bohemica, Tome 122 (1997) no. 2, pp. 181-189. doi: 10.21136/MB.1997.125913
Cité par Sources :