Exact $2$-step domination in graphs
Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 125-134
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a vertex $v$ in a graph $G$, the set $N_2(v)$ consists of those vertices of $G$ whose distance from $v$ is 2. If a graph $G$ contains a set $S$ of vertices such that the sets $N_2(v)$, $v\in S$, form a partition of $V(G)$, then $G$ is called a $2$-step domination graph. We describe $2$-step domination graphs possessing some prescribed property. In addition, all $2$-step domination paths and cycles are determined.
DOI :
10.21136/MB.1995.126228
Classification :
05C12, 05C38, 05C70
Keywords: $2$-step domination graph; paths; cycles
Keywords: $2$-step domination graph; paths; cycles
@article{10_21136_MB_1995_126228,
author = {Chartrand, Gary and Harary, Frank and Hossain, Moazzem and Schultz, Kelly},
title = {Exact $2$-step domination in graphs},
journal = {Mathematica Bohemica},
pages = {125--134},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1995},
doi = {10.21136/MB.1995.126228},
mrnumber = {1357597},
zbl = {0863.05050},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/}
}
TY - JOUR AU - Chartrand, Gary AU - Harary, Frank AU - Hossain, Moazzem AU - Schultz, Kelly TI - Exact $2$-step domination in graphs JO - Mathematica Bohemica PY - 1995 SP - 125 EP - 134 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/ DO - 10.21136/MB.1995.126228 LA - en ID - 10_21136_MB_1995_126228 ER -
%0 Journal Article %A Chartrand, Gary %A Harary, Frank %A Hossain, Moazzem %A Schultz, Kelly %T Exact $2$-step domination in graphs %J Mathematica Bohemica %D 1995 %P 125-134 %V 120 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126228/ %R 10.21136/MB.1995.126228 %G en %F 10_21136_MB_1995_126228
Chartrand, Gary; Harary, Frank; Hossain, Moazzem; Schultz, Kelly. Exact $2$-step domination in graphs. Mathematica Bohemica, Tome 120 (1995) no. 2, pp. 125-134. doi: 10.21136/MB.1995.126228
Cité par Sources :