Packings of pairs with a minimum known number of quadruples
Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 367-377
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $E$ be an $n$-set. The problem of packing of pairs on $E$ with a minimum number of quadruples on $E$ is settled for $n15$ and also for $n=36t+i$, $i=3$, $6$, $9$, $12$, where $t$ is any positive integer. In the other cases of $n$ methods have been presented for constructing the packings having a minimum known number of quadruples.
DOI :
10.21136/MB.1995.126092
Classification :
05B05, 05B40
Keywords: configuration; packing of pairs; quadruples; packing of pairs with quadruples; system of quadruples; packing of $K_4$'s into $K_n$
Keywords: configuration; packing of pairs; quadruples; packing of pairs with quadruples; system of quadruples; packing of $K_4$'s into $K_n$
@article{10_21136_MB_1995_126092, author = {Nov\'ak, Ji\v{r}{\'\i}}, title = {Packings of pairs with a minimum known number of quadruples}, journal = {Mathematica Bohemica}, pages = {367--377}, publisher = {mathdoc}, volume = {120}, number = {4}, year = {1995}, doi = {10.21136/MB.1995.126092}, mrnumber = {1415084}, zbl = {0843.05017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126092/} }
TY - JOUR AU - Novák, Jiří TI - Packings of pairs with a minimum known number of quadruples JO - Mathematica Bohemica PY - 1995 SP - 367 EP - 377 VL - 120 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126092/ DO - 10.21136/MB.1995.126092 LA - en ID - 10_21136_MB_1995_126092 ER -
Novák, Jiří. Packings of pairs with a minimum known number of quadruples. Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 367-377. doi: 10.21136/MB.1995.126092
Cité par Sources :