A principle of linearization in theory of stability of solutions of variational inequalities
Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 337-345

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is shown that the uniform exponential stability and the uniform stability at permanently acting disturbances of a sufficiently smooth but not necessarily steady-state solution of a general variational inequality is a consequence of the uniform exponential stability of a zero solution of another (so called linearized) variational inequality.
DOI : 10.21136/MB.1995.126091
Classification : 34D05, 34G20, 34G99, 47H19, 47J20, 47N20, 49J40, 58E35
Keywords: linearization; stability; variational inequality
@article{10_21136_MB_1995_126091,
     author = {Neustupa, Ji\v{r}{\'\i}},
     title = {A principle of linearization in theory of stability of solutions of variational inequalities},
     journal = {Mathematica Bohemica},
     pages = {337--345},
     publisher = {mathdoc},
     volume = {120},
     number = {4},
     year = {1995},
     doi = {10.21136/MB.1995.126091},
     mrnumber = {1415082},
     zbl = {0847.34057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/}
}
TY  - JOUR
AU  - Neustupa, Jiří
TI  - A principle of linearization in theory of stability of solutions of variational inequalities
JO  - Mathematica Bohemica
PY  - 1995
SP  - 337
EP  - 345
VL  - 120
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/
DO  - 10.21136/MB.1995.126091
LA  - en
ID  - 10_21136_MB_1995_126091
ER  - 
%0 Journal Article
%A Neustupa, Jiří
%T A principle of linearization in theory of stability of solutions of variational inequalities
%J Mathematica Bohemica
%D 1995
%P 337-345
%V 120
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.126091/
%R 10.21136/MB.1995.126091
%G en
%F 10_21136_MB_1995_126091
Neustupa, Jiří. A principle of linearization in theory of stability of solutions of variational inequalities. Mathematica Bohemica, Tome 120 (1995) no. 4, pp. 337-345. doi: 10.21136/MB.1995.126091

Cité par Sources :