$\Sigma$-isomorphic algebraic structures
Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 71-81
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For an algebraic structure $\A=(A,F,R)$ or type $\t$ and a set $\Sigma$ of open formulas of the first order language $L(\t)$ we introduce the concept of $\Sigma$-closed subsets of $\A$. The set $\C_\Sigma(\A)$ of all $\Sigma$-closed subsets forms a complete lattice. Algebraic structures $\A$, $\B$ of type $\t$ are called $\Sigma$-isomorphic if $\C_\Sigma(\A)\cong\C_\Sigma(\B)$. Examples of such $\Sigma$-closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study $\Sigma$-isomorphic algebraic structures in dependence on the properties of $\Sigma$.
DOI :
10.21136/MB.1995.125890
Classification :
03C05, 04A05, 06B10, 08A05
Keywords: closure system; isomorphism; lattice of $\Sigma$-closed subsets; subalgebras; ideals; algebraic structure; $\Sigma$-closed subset; $\Sigma$-isomorphic structures
Keywords: closure system; isomorphism; lattice of $\Sigma$-closed subsets; subalgebras; ideals; algebraic structure; $\Sigma$-closed subset; $\Sigma$-isomorphic structures
@article{10_21136_MB_1995_125890,
author = {Chajda, Ivan and Emanovsk\'y, Petr},
title = {$\Sigma$-isomorphic algebraic structures},
journal = {Mathematica Bohemica},
pages = {71--81},
publisher = {mathdoc},
volume = {120},
number = {1},
year = {1995},
doi = {10.21136/MB.1995.125890},
mrnumber = {1336947},
zbl = {0833.08001},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125890/}
}
TY - JOUR AU - Chajda, Ivan AU - Emanovský, Petr TI - $\Sigma$-isomorphic algebraic structures JO - Mathematica Bohemica PY - 1995 SP - 71 EP - 81 VL - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1995.125890/ DO - 10.21136/MB.1995.125890 LA - en ID - 10_21136_MB_1995_125890 ER -
Chajda, Ivan; Emanovský, Petr. $\Sigma$-isomorphic algebraic structures. Mathematica Bohemica, Tome 120 (1995) no. 1, pp. 71-81. doi: 10.21136/MB.1995.125890
Cité par Sources :