Extending Peano derivatives
Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 387-406
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $H\subset [0,1]$ be a closed set, $k$ a positive integer and $f$ a function defined on $H$ so that the $k$-th Peano derivative relative to $H$ exists. The major result of this paper is that if $H$ has finite Denjoy index, then $f$ has an extension, $F$, to $[0,1]$ which is $k$ times Peano differentiable on $[0,1]$ with $f_i=F_i$ on $H$ for $i=1,2,\ldots,k$.
@article{10_21136_MB_1994_126113, author = {Fejzi\'c, Hajrudin and Ma\v{r}{\'\i}k, Jan and Weil, Clifford E.}, title = {Extending {Peano} derivatives}, journal = {Mathematica Bohemica}, pages = {387--406}, publisher = {mathdoc}, volume = {119}, number = {4}, year = {1994}, doi = {10.21136/MB.1994.126113}, mrnumber = {1316592}, zbl = {0824.26003}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126113/} }
TY - JOUR AU - Fejzić, Hajrudin AU - Mařík, Jan AU - Weil, Clifford E. TI - Extending Peano derivatives JO - Mathematica Bohemica PY - 1994 SP - 387 EP - 406 VL - 119 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/MB.1994.126113/ DO - 10.21136/MB.1994.126113 LA - en ID - 10_21136_MB_1994_126113 ER -
Fejzić, Hajrudin; Mařík, Jan; Weil, Clifford E. Extending Peano derivatives. Mathematica Bohemica, Tome 119 (1994) no. 4, pp. 387-406. doi: 10.21136/MB.1994.126113
Cité par Sources :