Finite element variational crimes in the case of semiregular elements
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398
    
  
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain $\Omega $ whose boundary $\partial \Omega $ is formed by two circles $\Gamma _1$, $\Gamma _2$ with the same center $S_0$ and radii $R_1$, $R_2=R_1+\varrho $, where $\varrho \ll R_1$. On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for $u=0$ are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus triangles obeying only the maximum angle condition and narrow quadrilaterals are used. The restrictions of test functions on triangles are linear functions while on quadrilaterals they are four-node isoparametric functions. Both the effect of numerical integration and that of approximation of the boundary are analyzed. The rate of convergence $O(h)$ in the norm of the Sobolev space $H^1$ is proved under the following conditions: 1.  the
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.21136/AM.1996.134332
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
65N30
Keywords: finite element method; elliptic problems; semiregular elements; maximum angle condition; variational crimes
                    
                    
                    
                  
                
                
                Keywords: finite element method; elliptic problems; semiregular elements; maximum angle condition; variational crimes
@article{10_21136_AM_1996_134332,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {Finite element variational crimes in the case of semiregular elements},
     journal = {Applications of Mathematics},
     pages = {367--398},
     publisher = {mathdoc},
     volume = {41},
     number = {5},
     year = {1996},
     doi = {10.21136/AM.1996.134332},
     mrnumber = {1404547},
     zbl = {0870.65094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/}
}
                      
                      
                    TY - JOUR AU - Ženíšek, Alexander TI - Finite element variational crimes in the case of semiregular elements JO - Applications of Mathematics PY - 1996 SP - 367 EP - 398 VL - 41 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/ DO - 10.21136/AM.1996.134332 LA - en ID - 10_21136_AM_1996_134332 ER -
%0 Journal Article %A Ženíšek, Alexander %T Finite element variational crimes in the case of semiregular elements %J Applications of Mathematics %D 1996 %P 367-398 %V 41 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/ %R 10.21136/AM.1996.134332 %G en %F 10_21136_AM_1996_134332
Ženíšek, Alexander. Finite element variational crimes in the case of semiregular elements. Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398. doi: 10.21136/AM.1996.134332
Cité par Sources :