Finite element variational crimes in the case of semiregular elements
Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The finite element method for a strongly elliptic mixed boundary value problem is analyzed in the domain $\Omega $ whose boundary $\partial \Omega $ is formed by two circles $\Gamma _1$, $\Gamma _2$ with the same center $S_0$ and radii $R_1$, $R_2=R_1+\varrho $, where $\varrho \ll R_1$. On one circle the homogeneous Dirichlet boundary condition and on the other one the nonhomogeneous Neumann boundary condition are prescribed. Both possibilities for $u=0$ are considered. The standard finite elements satisfying the minimum angle condition are in this case inconvenient; thus triangles obeying only the maximum angle condition and narrow quadrilaterals are used. The restrictions of test functions on triangles are linear functions while on quadrilaterals they are four-node isoparametric functions. Both the effect of numerical integration and that of approximation of the boundary are analyzed. The rate of convergence $O(h)$ in the norm of the Sobolev space $H^1$ is proved under the following conditions: 1. the
DOI : 10.21136/AM.1996.134332
Classification : 65N30
Keywords: finite element method; elliptic problems; semiregular elements; maximum angle condition; variational crimes
@article{10_21136_AM_1996_134332,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {Finite element variational crimes in the case of semiregular elements},
     journal = {Applications of Mathematics},
     pages = {367--398},
     publisher = {mathdoc},
     volume = {41},
     number = {5},
     year = {1996},
     doi = {10.21136/AM.1996.134332},
     mrnumber = {1404547},
     zbl = {0870.65094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/}
}
TY  - JOUR
AU  - Ženíšek, Alexander
TI  - Finite element variational crimes in the case of semiregular elements
JO  - Applications of Mathematics
PY  - 1996
SP  - 367
EP  - 398
VL  - 41
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/
DO  - 10.21136/AM.1996.134332
LA  - en
ID  - 10_21136_AM_1996_134332
ER  - 
%0 Journal Article
%A Ženíšek, Alexander
%T Finite element variational crimes in the case of semiregular elements
%J Applications of Mathematics
%D 1996
%P 367-398
%V 41
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134332/
%R 10.21136/AM.1996.134332
%G en
%F 10_21136_AM_1996_134332
Ženíšek, Alexander. Finite element variational crimes in the case of semiregular elements. Applications of Mathematics, Tome 41 (1996) no. 5, pp. 367-398. doi: 10.21136/AM.1996.134332

Cité par Sources :