Cauchy problem for the non-newtonian viscous incompressible fluid
Applications of Mathematics, Tome 41 (1996) no. 3, pp. 169-201
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the Cauchy problem for the non-Newtonian incompressible fluid with the viscous part of the stress tensor $\tau ^V(\mathbb{e}) = \tau (\mathbb{e}) - 2\mu _1 \Delta \mathbb{e}$, where the nonlinear function $\tau (\mathbb{e})$ satisfies $\tau _{ij}(\mathbb{e})e_{ij} \ge c|\mathbb{e}|^p$ or $\tau _{ij}(\mathbb{e})e_{ij} \ge c(|\mathbb{e}|^2+|\mathbb{e}|^p)$. First, the model for the bipolar fluid is studied and existence, uniqueness and regularity of the weak solution is proved for $p > 1$ for both models. Then, under vanishing higher viscosity $\mu _1$, the Cauchy problem for the monopolar fluid is considered. For the first model the existence of the weak solution is proved for $p > \frac{3n}{n+2}$, its uniqueness and regularity for $p \ge 1 + \frac{2n}{n+2}$. In the case of the second model the existence of the weak solution is proved for $p>1$.
DOI :
10.21136/AM.1996.134320
Classification :
35Q30, 76A05
Keywords: non-Newtonian incompressible fluids; Navier-Stokes equations; Cauchy problem
Keywords: non-Newtonian incompressible fluids; Navier-Stokes equations; Cauchy problem
@article{10_21136_AM_1996_134320,
author = {Pokorn\'y, Milan},
title = {Cauchy problem for the non-newtonian viscous incompressible fluid},
journal = {Applications of Mathematics},
pages = {169--201},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {1996},
doi = {10.21136/AM.1996.134320},
mrnumber = {1382464},
zbl = {0863.76003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/}
}
TY - JOUR AU - Pokorný, Milan TI - Cauchy problem for the non-newtonian viscous incompressible fluid JO - Applications of Mathematics PY - 1996 SP - 169 EP - 201 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/ DO - 10.21136/AM.1996.134320 LA - en ID - 10_21136_AM_1996_134320 ER -
%0 Journal Article %A Pokorný, Milan %T Cauchy problem for the non-newtonian viscous incompressible fluid %J Applications of Mathematics %D 1996 %P 169-201 %V 41 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134320/ %R 10.21136/AM.1996.134320 %G en %F 10_21136_AM_1996_134320
Pokorný, Milan. Cauchy problem for the non-newtonian viscous incompressible fluid. Applications of Mathematics, Tome 41 (1996) no. 3, pp. 169-201. doi: 10.21136/AM.1996.134320
Cité par Sources :