On the solvability of some multi-point boundary value problems
Applications of Mathematics, Tome 41 (1996) no. 1, pp. 1-17
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $f\colon [0,1]\times \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function satisfying Caratheodory’s conditions and let $e(t)\in L^{1}[0,1]$. Let $\xi _{i}, \tau _{j}\in (0,1)$, $ c_{i},a_{j}\in \mathbb{R}$, all of the $c_{i}$’s, (respectively, $a_{j}$’s) having the same sign, $i=1,2,\ldots ,m-2$, $j=1,2,\ldots ,n-2$, $0 \xi _{1}\xi _{2}\ldots \xi _{m-2}1$, $0 \tau _{1}\tau _{2}\ldots \tau _{n-2}1$ be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems \begin{align*} x^{\prime\prime}(t)=f(t, x(t),x^{\prime}(t))+e(t),\qquad t\in (0,1)\tag{E} \\ x(0)=\sum\limits_{i=1}^{m-2} c_{i}x^{\prime}(\xi_{i}),\qquad x(1)=\sum\limits_{j=1}^{n-2} a_{j}x(\tau_{j}) \tag{BC$_{mn}$}\end{align*} and \begin{align*} x^{\prime\prime}(t)=f(t, x(t),x^{\prime}(t))+e(t),\qquad t\in (0,1)\tag {E}\\ x(0)=\sum\limits_{i=1}^{m-2} c_{i}x^{\prime}(\xi_{i}),\qquad x^{\prime}(1)=\sum\limits_{j=1}^{n-2} a_{j}x^{\prime}(\tau_{j}), \tag{BC$_{mn}$'} \end{align*} Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.
DOI :
10.21136/AM.1996.134310
Classification :
34B10, 34B15
Keywords: multi-point boundary value problems; four point boundary value problems; Leray-Schauder Continuation theorem; a priori bounds
Keywords: multi-point boundary value problems; four point boundary value problems; Leray-Schauder Continuation theorem; a priori bounds
@article{10_21136_AM_1996_134310, author = {Gupta, Chaitan P. and Ntouyas, S. K. and Tsamatos, P. Ch.}, title = {On the solvability of some multi-point boundary value problems}, journal = {Applications of Mathematics}, pages = {1--17}, publisher = {mathdoc}, volume = {41}, number = {1}, year = {1996}, doi = {10.21136/AM.1996.134310}, mrnumber = {1365136}, zbl = {0858.34013}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/} }
TY - JOUR AU - Gupta, Chaitan P. AU - Ntouyas, S. K. AU - Tsamatos, P. Ch. TI - On the solvability of some multi-point boundary value problems JO - Applications of Mathematics PY - 1996 SP - 1 EP - 17 VL - 41 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/ DO - 10.21136/AM.1996.134310 LA - en ID - 10_21136_AM_1996_134310 ER -
%0 Journal Article %A Gupta, Chaitan P. %A Ntouyas, S. K. %A Tsamatos, P. Ch. %T On the solvability of some multi-point boundary value problems %J Applications of Mathematics %D 1996 %P 1-17 %V 41 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1996.134310/ %R 10.21136/AM.1996.134310 %G en %F 10_21136_AM_1996_134310
Gupta, Chaitan P.; Ntouyas, S. K.; Tsamatos, P. Ch. On the solvability of some multi-point boundary value problems. Applications of Mathematics, Tome 41 (1996) no. 1, pp. 1-17. doi: 10.21136/AM.1996.134310
Cité par Sources :