Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 40 (1995) no. 3, pp. 227-248
    
  
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a posteriori error estimators which can be derived by a defect correction in higher order ansatz spaces or by taking advantage of superconvergence results. The performance of the algorithms is illustrated by several numerical examples.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.21136/AM.1995.134292
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
35J25, 65F10, 65N12, 65N15, 65N30, 65N50, 65N55
Keywords: elliptic boundary value problems; mixed finite element methods; adaptive multilevel techniques
                    
                    
                    
                  
                
                
                Keywords: elliptic boundary value problems; mixed finite element methods; adaptive multilevel techniques
@article{10_21136_AM_1995_134292,
     author = {Hoppe, Ronald H.W. and Wohlmuth, Barbara},
     title = {Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods},
     journal = {Applications of Mathematics},
     pages = {227--248},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1995},
     doi = {10.21136/AM.1995.134292},
     mrnumber = {1332315},
     zbl = {0833.65131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1995.134292/}
}
                      
                      
                    TY - JOUR AU - Hoppe, Ronald H.W. AU - Wohlmuth, Barbara TI - Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods JO - Applications of Mathematics PY - 1995 SP - 227 EP - 248 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1995.134292/ DO - 10.21136/AM.1995.134292 LA - en ID - 10_21136_AM_1995_134292 ER -
%0 Journal Article %A Hoppe, Ronald H.W. %A Wohlmuth, Barbara %T Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods %J Applications of Mathematics %D 1995 %P 227-248 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1995.134292/ %R 10.21136/AM.1995.134292 %G en %F 10_21136_AM_1995_134292
Hoppe, Ronald H.W.; Wohlmuth, Barbara. Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods. Applications of Mathematics, Tome 40 (1995) no. 3, pp. 227-248. doi: 10.21136/AM.1995.134292
Cité par Sources :
